
Periodical Payment Model using Restricted Proxy Certificates

Grigori Goldman
School of Information Technology and Electrical Engineering

University of New South Wales, Australian Defence Force Academy
Canberra 2600, Australian Capital Territory

grigori.goldman@adfa.edu.au

Abstract
In this paper we shall introduce a new electronic payment
concept based on the popular direct debit payment model,
entitled periodical payments. The direct debit model
currently in use online is neither secure nor flexible, and
requires a leap of faith by the customer who must trust the
merchant to behave honestly. Electronic direct debit
request (DDR) forms are not signed by both parties in a
binding manner, which means that merchants can change
the terms of DDR agreements post-fact. Unsigned DDR
agreements give the merchant unprecedented power over
customer accounts with little recourse for dispute.

In this paper we shall demonstrate how the use of
restricted proxy certificates with cryptographic signatures
can be adopted to support a new periodical payment
model. A payment policy language is presented that is
tailored towards specifying rules that govern precisely
how and when merchants can access and transfer funds
from customer accounts into their own. Using this model
will ensure that mutually signed policies are instantly
enforceable on every transaction within a payment period.

There is a fundamental difference between this proposal
and other electronic payment schemes. Most such
schemes attempt to replicate the features of physical cash
such as anonymity, and therefore focus on single payment
transactions that simulate cash changing hands. Since
direct debit is a popular payment choice, our proposal
provides significant improvement to this essentially
paper-based payment model that currently does not
integrate well in a purely electronic world.

Keywords: e-commerce, payment, periodical, direct
debit.

1 Introduction
The notion of electronic payments is not a new one. It
dates back as far as early 1980s when David Chaum first
presented the concept of using blind digital signatures for
implementing untraceable electronic payments. Since
then, there has always been much interest in electronic
payment systems. Our research has shown that each new
proposal focused on two main areas of interest:
anonymity of participants of each transaction and the

 Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the Thirtieth Australasian Computer Science
Conference (ACSC2007), Ballarat, Australia. Conferences in
Research and Practice in Information Technology (CRIPT),
Vol. 62. Gillian Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

security of the underlying currency representation (be it
digital coins or accounts). For digital coins the primary
focus has always been on solving the double-spending
problem whereby the same user spends a digital coin
twice. For account-based systems, anonymity has always
been the more difficult problem to solve.

With the growing popularity of electronic payments a
new payment model has emerged. Due to the ever-
increasing demand for subscription-based services, direct
debit payments have become a very popular method of
payment, as is evident from annual reports of both the
Reserve Bank of Australia (RBA, 2005) and Australian
Payments Clearing Association (APCA, 2005). These
types of payments are not confined to subscription-based
services and are now available in most industries where
traditionally lump-sum payments were required in the
past (e.g. insurance industry).

It is no surprise that direct debit payment model found its
way onto the Internet and is now being used as an
alternative payment method. Fundamentally, however,
direct debits are essentially a paper-based payment
model. It revolves around a concept of a direct debit
request (DDR) form, which is a signed, legally (if not
computationally) binding contract between a customer
and a merchant.

Personal experience has shown that the direct debit model
currently in use online has not changed at all from its
paper-based roots. As such, it is neither flexible nor
secure and is open to abuse by merchants. Unlike its off-
line counterpart, DDR forms are not signed and provide
no binding (cryptographic or otherwise) to customers or
merchants. This means that in actual fact, merchants may
change the terms of DDR agreement post-fact, or in other
words, disregard the agreement entirely and use customer
account details in whatever way is most profitable. The
Reserve Bank of Australia has acknowledged these
problems as early as 2001 in its annual report (RBA,
2001), however, the changes that it recommended and
introduced are policy driven rather than technical.

Clearly the use of direct debit as an electronic payment
method is problematic unless major changes are
introduced to restrict merchant abilities to access
customer accounts. So far, no other payment scheme to
our knowledge has seriously looked into this issue. In
fact, most electronic payment research we have examined
so far is focused on duplicating the features of physical
cash and as such is not appropriate to this model.

In this paper, a fundamentally different approach to
electronic payments is taken. Instead of treating each
payment transaction as a point-to-point transfer of funds,

simulating physical cash changing hands, payments are
viewed as a series of linked transactions. Just like in the
direct debit process, customers are required to sign an
agreement, which delegates the right to withdraw funds
from their accounts to a nominated merchant. The key
difference between this proposal and what is currently
provided by direct debit is the cryptographic binding of
the agreement to the customer and the merchant
providing traceability and enforceability.

Another significant advantage of the new approach is its
practical use of the payment agreement for enforcing the
terms during every single payment transaction. Unlike
with the paper-based model where the agreement is only
enforceable when legally disputed, or the electronic
version where it is not even traceable or binding, the new
approach actively assures that each transaction is within
the agreed bounds of the policy effectively preventing
fraud.

The periodical payment model presented in this paper is
driven by the X.509 restricted proxy certificate standard.
Restricted proxy certificates are used to delegate
permissions to transfer funds from customer accounts to
merchants. This certificate becomes the binding artefact
that links the customer and the merchant together and that
could be used in case of disputes.

Finally, a payment policy language is presented that
provides the main instrument for instantaneously
enforcing each transaction as discussed previously. This
language was designed to describe most common
scenarios that are applicable to periodical payments but of
course it is flexible enough to accommodate traditional,
not periodical payment types as well.

The next section presents a brief overview of the most
relevant electronic payment schemes. It also discusses the
grid security architecture that successfully used proxy
certificates for delegation. Then, follows a detailed
introduction of the periodical payment model broken
down into two sections: 1) the initial delegation of the
payment credential to the merchant and 2) the use of that
credential to initiate a single payment transaction. The
semantics of the payment policy language will be
discussed next. Finally, a brief discussion of anticipated
future work is presented.

2 Related Work
There are numerous electronic payment systems that have
been proposed and developed over the years. However,
none approach the problem from the standpoint of
periodical payments. As such there is very little work that
has directly influenced the direction of this paper.

Most of the work that deals with notational, account-
based electronic payments has focused on three major
areas of research: authentication of participants, security
of transactions and in some cases anonymity. No explicit
attempts to solve the problem of delegation in electronic
payment environments have ever been seriously
considered.

There is some research that stands out as relevant in their
approach to payments in general and could be considered

as the first building blocks for the implementation of
periodical payments. For example, (Bellare et al., 1995)
and (Bellare et al., 2000) presented an interesting protocol
entitled i-Key-Protocol (iKP), which discussed the
possibility of integrating a new secure approach to
payments into an existing payment clearing
infrastructure. Just like the proposal discussed in this
paper, iKP uses the payment gateway concept as the
mechanism for interacting with merchants. Its purpose is
to convert payment artefacts into format that will be
recognised by the legacy systems.

Similarly, iKP also relies heavily on certificates as the
authentication and authorisation mechanism. However,
the authors do realise that the level of PKI acceptance and
market penetration is not sufficient to allow effective
adoption of the mechanism. Hence this protocol
introduces a staged integration approach whereby the first
stage requires no PKI at all while the later stages
gradually introduce certificates.

Another interesting notational scheme is the anonymous
Internet mercantile protocol presented by (Low et al.,
1994). This protocol does not address the unique
requirements for periodical payments directly, however, it
is one of the very few schemes that deliver a form of
multi-transactional support. It works by allowing
customers to set up session (i.e. temporary) accounts with
merchants, which can be debited by the merchants
without explicit involvement of the customers. Whenever
the funds in such accounts run out, the customer is
responsible for injecting more money if the relationship
with the merchant is to continue.

The main motivation for designing the mercantile
protocol was not to enable periodical payments. Instead it
arose from the desire to streamline the payment process
so that it would be quicker and more convenient for the
customer and merchant.

There are significant conceptual differences, however,
between the protocol presented by (Low et al., 1994), and
the one discussed in this paper. One major limitation of
the session account concept is the fact that all of the funds
have to be committed before the transaction takes place.
This, in a fact, contradicts our current definition of
periodical payments, which allows customers to split a
single large payment into multiple smaller ones,
distributed across multiple payment periods. This is
important since in some cases the motivation for choosing
periodical payment option is because of the lack of funds
to complete the entire transaction in one hit.

Since the funds are committed at the beginning of the
transaction, this protocol therefore fails to deliver on
another important requirement for periodical payments.
The customer is required to relinquish control of the
funds to the merchant and loses all control of how those
funds are managed. This means that given a malicious
merchant, the funds can be taken without permission. No
effort to restrict access to funds is made with the only
advisable safeguard being to transfer only small amounts
of money into such accounts.

Due to the lack of appropriate solutions to the periodical
payment problem, the work on grid security was closely

studied so that some of the underlying concepts could be
adopted for use in electronic payments. For example,
(Welch et al., 2004) presented a discussion on the use of
X.509 proxy certificates for enabling delegation in grid
environments. This work followed the general discussion
on grid security services presented by (Welch et al.,
2003).

Significant amount of research and development towards
improving and standardising the proxy certificate
specification (Tuecke et al., 2004) was accomplished
through the development of the grid security services. Its
major contribution, the Open Grid Services Architecture
(OGSA), and in particular, its Grid Security Infrastructure
(GSI), has delivered a set of standard tools that use proxy
certificates for authentication within a complex,
heterogeneous environment.

The grid architecture presents a very compelling reason
for using proxy certificates since it requires its users to
authenticate themselves to various services distributed
across a wide area network. Furthermore, its sole purpose
is to allow users to execute computationally expensive
operations, which can potentially take hours, or days and
that require minimal supervision from those users. When
presented by (Koufil and Basney, 2005), these tasks were
commonly referred to as batch jobs because they are not
executed when submitted but are scheduled and executed
when appropriate hosts are found and enough resource
have been allocated to execute them.

It is clear how the use of proxy certificates within grid
environments is applicable in periodical payments.
Periodical payment requirements on delegation and
authorisation can be seen as a subset of the overall
problem that the grid security infrastructure is trying to
solve. The general principal behind the use of restricted
proxy certificates is to delegate both the issuer’s identity
and some subset of issuer’s privileges to the bearer. For
periodical payments, the resources for which access is
granted is always the customer’s bank account, while the
privileges being delegated always refer to the amount of
funds that can be transferred and who can do so.

Some common issues that are relevant in grids are not
relevant in periodical payments, which simplify the
paradigm. For example, dynamic creation of new entities
within the network, which is an important concern in
grids, is not an issue since it is always known before each
transaction, which parties are involved and once the
payment contract is negotiated no amendments are
allowed.

In the next section, a complete model of the periodical
payment process is presented. This scheme uses the
restricted proxy certificates developed as part of the grid
security project but instead of authentication their role is
to convey customer account access authorisation
information.

3 Periodical Payment Process Using Restricted
Proxy Certificates

The complete periodical payment process is somewhat
involved. Unlike the traditional model, which assumes

immediate transfer of funds, periodical payments do not.
Instead, this process works in a schedule-type framework,
whereby the initial (and only) customer-merchant
interaction only establishes the terms of each scheduled
transaction. Before discussing the details of the periodical
payment protocol it is important to understand this
fundamental idea.

The periodical payment policy is the core of the model.
This policy is essentially an agreement, a contract
between a customer and a merchant. The merchant
promises to provide a customer with a service while the
customer agrees to pay for that service on regular basis.
This policy is essential to this process because it places
restrictions on the delegated credentials that the customer
must give the merchant so that all subsequent transactions
can be performed without further customer intervention.

The important qualities for the policy language that are of
particular interest are its simplicity and flexibility. It is
envisaged that the contents of the payment policy would
need to be presented to customers in a human-readable
form so that manual validation could be performed. As
such, language simplicity is of the highest importance to
ensure that customers can easily visually inspect each
periodical payment contract and understand it.

While simplicity is of particular importance, language
flexibility is also crucial. The policy language must
contain sufficient expressiveness to describe most
common periodical payment scenarios. For example,
when delegating credentials, it is most likely that
customers would be interested in the following
restrictions:

1. The merchant will only charge customer account for
services provided (or to be provided) to the customer.

2. The merchant will only charge the agreed amount or
within a specified range (e.g. anything under $200,
etc.)

3. The merchant will only charge customer account
once per agreed payment period.

4. The merchant will cease to charge customer account
upon completion of the contract or as soon as the
service for which it was established is no longer
provided.

5. The merchant will cease to charge customer account
on request.

It is clear how the above assertions could be used by a
payment gateway to validate each transaction initiated by
the merchant using customer-delegated credentials. Later
in this section, it will be demonstrated how each of the
above assertions can be easily expressed using our
experimental policy assertion language. For now, lets
examine the two stages of the periodical payment
process: 1) the delegation of the payment credential
(including signing of the policy document), and 2)
initiation of a payment transaction (i.e. transfer of funds
from customer to merchant account).

Customer Merchant Payment Gateway

requestPeriodicalPayment()

createKeyPair(): keyPair

createPolicyStatement(): proxyCertPolicy

createProxyCertificateRequest(keyPair,proxyCertPolicy): proxyCertReq

processProxyCertificateRequest(proxyCertReq): proxyCertResp

verifyProxyCertificate(proxyCert)

verifyPolicyDocument(proxyCertPolicy)

signProxyCertificate(privateKey, proxyCert)

createProxyCertificateResponse(proxyCert): proxyCertResp

processProxyCertificateRequest

validateCustomerCredentials(proxyCert)

validateCustomerCredentials

requestPeriodicalPayment

Figure 1: Payment Certificate Delegation Process

3.1 Delegation of Periodical Payment (Proxy)
Certificate

The delegation of a periodical payment certificate is the
first step in the payment process and is the only one that
involves the customer. It is based on the X.509 proxy
certificate delegation process defined in (Tuecke et al.,
2004). The only addition to the standard protocol that is
necessary is the creation and acceptance of the policy
document that forms the foundation of the payment
certificate. The delegation steps are depicted in Figure 1
and can be described as follows:

1. Once the customer requests a periodical payment
option, the merchant generates a new public-private
key pair.

2. The merchant then creates a policy statement.

3. Using the key pair created in step 1, the merchant
creates a restricted proxy certificate request. This
request must conform to the specification described
in (Tuecke et al., 2004). It will also contain the
policy created in step 2.

4. The request is sent to the customer for consideration
(i.e. the customer must process the request to
examine the policy and to sign the certificate).

5. The customer must verify that the proxy certificate
request is valid, i.e. it is not an end-entity certificate
and all of its mandatory fields have been correctly
set. Normally, the policy document is an optional
field, however, for our purposes it is mandatory.

6. The customer must review and verify the terms of the
policy document received from the merchant. It can
either try to renegotiate the terms of the policy, reject
it or proceed with the next step.

7. The customer must sign the proxy certificate with its
own private key, create a response message and send
it back to the merchant.

8. Finally, the customer can create the proxy certificate
response message and forward it to the merchant.

9. Once the merchant receives the response, it needs to
validate the authenticity of its signature. This task is
delegated to the payment gateway that is capable of
validating all customer credentials. If a positive
response is received, the merchant can use the proxy
certificate subject to its policy.

The final step (step 9) of this process concludes with the
merchant obtaining possession of the restricted proxy
certificate which, when presented to a payment gateway,
will enable it to transfer funds from customer account to
its own. The policy contained within this certificate is the
artefact that is used by the payment gateway to make its
decision whether to allow the transfer to proceed or to
reject it.

There is a significant complication with the above
process. Upon detailed analysis it was observed that a
certificate with a restriction policy is not sufficient for the
payment gateway to determine whether a single
transaction is within the bounds of the policy agreement.
That is, since a policy can dictate a long period between
each transaction (e.g. a month or a quarter), a policy
alone does not convey the necessary information to

Merchant Payment Gateway Legacy Payment Gateway

processTransaction(paymentOrder):response

validatePaymentOrder(proxyCertPolicy, paymentOrder)

convertPaymentOrderToLegacyFormat(paymentOrder): order

processTransaction(order): response

processTransaction

revokeCurrentTransactionPeriod(proxyCert)

processTransaction

Figure 2: Single Payment Transaction Process

uniquely identify a transaction. This is a classic double-
spending problem. In this case, the payment gateway
cannot use a certificate policy alone to determine whether
a particular transaction was already performed within a
specific payment period.

3.1.1 Solving the Double-Spending Problem
Clearly the double-spending problem as discussed so far
is precisely the reason why a new periodical payment
approach is being presented. It is one of the most
important issues that cannot be sufficiently addressed by
the current direct debit model.

Using proxy certificates for payment authorisation,
however, provides the periodical payment model with
various convenient ways of solving this problem. The
simplest solution to the problem is for the payment
gateway to record each transaction performed by the
merchant. This log of transactions in combination with
the certificate policy is sufficient to determine whether an
individual transaction is valid. The payment gateway
must simply ensure that all assertions within the policy
are met and that the merchant has not performed a
transaction using this certificate in this payment period by
consulting the transaction logs.

This solution demands a great deal of the payment
gateway. It is inefficient to store all transactions that have
been performed and after closer analysis it was observed
that it is not necessary either. The payment policy, which
will be presented in depth later in this paper, declares one
important element called period, which can help a great
deal in reducing the amount of data that a payment
gateway must store.

The period element declares the interval between each
transaction (e.g. week, month, bi-monthly, etc.). This is
precisely the information that the payment gateway needs
when logging transactions.

The design that was adopted for the logging mechanism
is based on the concept of revocation similar to certificate
revocation lists described in (Housley et al., 2002). The
full credential cannot be revoked since no more
transactions would be possible and the periodical

payment model will be broken. Instead, the payment
gateway should only be interested in the last transaction
that was performed by the merchant using a payment
credential. Since the credential cannot be revoked, the
payment gateway can use the period value declared in the
policy to revoke the use of that credential for that period.
When used a second time within the same period, the
payment gateway can check its revocation lists and
identify double-spending attempt.

The format of the revocation lists for payment certificate
periods is simple. It needs to contain two values. The first
value must be the X.509 certificate unique identifier and
the second the period expiry date. The period expiry date
is the last date when the policy can be used to access
customer funds within a particular period. The only
complexity is the determination of the expiry date based
on the policy period attribute. However, this is not a
major issue since the payment gateway can reuse its
policy validation process, which must perform a similar
function, to extract this date.

3.2 Payment using Periodical Payment (Proxy)
Certificate

The actual process of initiating a payment transaction is
simple. The payment certificate, which is just a normal
X.509 proxy certificate can be passed to the payment
gateway via Transfer Layer Protocol (TLS) establishing a
secure connection to the gateway server. No modification
to this protocol is needed. It will handle all of the
necessary proxy certificate authentication-authorisation
using the standard path validation process described in
(Housley et al., 2002). Post authentication process is
depicted in Figure 2 and can be described as follows:

1. Once an encrypted channel is initialised, the
merchant can send the payment order for processing
of the transaction. This can be a simple XML object
that contains payment details such as from and to
accounts and amount.

2. Having received this information, the payment
gateway must validate it (i.e. validate payment order)

against the policy document it received via a
payment certificate. It must verify that:

• The certificate has not expired.

• This transaction is within an acceptable period
as declared in the policy.

• The current payment period for this certificate
has not been revoked, that is the merchant is
performing this transaction for the first time
within this payment period.

• The payment order amount is within the
acceptable range as declared in the policy.

Any errors in validation will force the payment
gateway to reject the payment order.

3. Upon successful validation of the payment order
against the policy, the payment gateway can proceed
with its processing. At this time, it is assumed that an
existing payment clearing infrastructure is most
likely to be used for actual funds transfer. As such,
the role of the payment gateway in this scenario is to
convert the payment order into a format that the
legacy clearing infrastructure can understand.

4. Converted payment order is then submitted to the
legacy system. Clearly in this case any problems that
occur during payment processing once submitted are
out of scope.

5. The final step that the payment gateway must
perform is to revoke the current payment transaction
period for the certificate. Clearly this step cannot fail,
otherwise this will give a merchant an opportunity to
submit a duplicate payment order and charge its
customers twice. For this reason, great effort is
required to assure that payment submission and the
revocation process are atomic operations.

Upon completion of this process the payment gateway
may respond to the merchant by issuing a response (i.e.
receipt) message that it can use as a reference.

4 Periodical Payment (Proxy) Certificate
Policy Language

Periodical payment policy language is expressed as an
XML document and it is surprising simple. It requires
only three custom data types with just four different XML
elements. Each element represents an assertion that the
payment gateway must evaluate to true before processing
a transaction.

Assertions By Type Element
Date <not-before-date>

<not-after-date>
Periodical Transaction <transaction>
Payment <payment>

Table 1: Policy Elements

The first and most straightforward assertion type is the
date type. Naturally, its purpose is to provide a
mechanism for specifying concrete dates that can be used

to declare contract boundaries where appropriate. Within
the policy XML this type is represented by two elements:
<not-before-date> and <not-after-date>. Each element
contains a single attribute, value, whose contents must
conform to the XML date format defined by the
(XMLSchema, 2005) specification.

Attribute Required? Value
Value Yes xsd:date

Table 2: Date Attributes

For example:

<not-before-date value=”2007-01-01”/> and

<not-after-date value=”2007-12-31”/>

The date assertions have an important role within the
policy. Not only can they be used as global assertions that
specify the contract boundaries, they can also be used as
constraints placed on other assertions within the same
policy. Constraints will be examined in more detail later
in this section.

In addition, to the date assertion type, the policy declares
a payment type. This type is expressed by a single XML
element <payment>. Its purpose is to define the payment
options that are available to the merchant. That is, using
this assertion the payment gateway can determine
whether the amount of funds that the merchant wishes to
transfer from the customers’ account is within the agreed
range.

The payment assertion is capable of representing various
amounts and currencies. It can be used to declare a single,
non-changing amount or it can specify a range of
acceptable amounts. To achieve this, it uses three
attributes: currency, amount and type.

Attribute Required? Value
Amount No xsd:decimal
Currency Yes AUD

USD
…

Type Yes Fixed
Limit
No-limit

Table 3: Payment Attributes

The purpose of the currency attribute is self-explanatory.
Since it is possible for transactions to be international, a
mechanism is required to specify which currency the
merchant is dealing with.

The amount attribute is closely related to the value of the
type attribute. Depending on whether the type is fixed or
limit, the meaning of the amount attribute changes. For a
fixed type, the amount value is static. That is, the
merchant can only withdraw the exact amount declared in
the policy. Anything else must cause a validation error.
For example:

<payment currency=”aud” amount=”20” type=”fixed”/>

For limit type, on the other hand, the amount value
indicates the upper boundary of the acceptable range of
values. In this case, anything up to and including the
value is considered acceptable. For example:

<payment currency=”aud” amount=”100” type=”limit”/>

Finally, the last and undoubtedly the most complicated
assertion type is the periodical transaction type. Within
the policy XML this type is represented by a single
element <transaction>. Its purpose is to declare the
interval (i.e. period) between each allowed transaction. It
must do so within a single expression, which makes it
slightly more complicated than the previous two
assertions.

It is clear why the transaction assertion is complex.
Within a single rule it must be able to represent the
complex behaviour that is inherent in periodical
payments. It must be flexible enough to describe all
transactions within the scope of the contract. As such, this
assertion requires four attributes: period, day-of-week,
week-of-month, and day-of-month.

Attribute Required? Value
Period Yes Daily, Weekly,

Fortnightly,
Monthly, Quarterly,
Half-yearly, Yearly

Day-of-week No [Mon, Tue, … Sun]
Day-of-month No [1…31]
Week-of-month No [1…5]

Table 4: Transaction Attributes

The period attribute has already been briefly introduced
earlier in this paper. Its purpose is to indicate the agreed
frequency of transactions, for example weekly, monthly,
quarterly, or yearly. By itself, however, it is not
sufficient. More information is required by the payment
gateway to determine when precisely a transaction can be
processed.

Day-of-week, week-of-month and day-of-month are the
attributes that can be used to provide the payment
gateway with that extra information that it needs. Their
use is determined by the value of the period attribute. For
example, for a weekly period, only the day-of-week
attribute is required. Its value must be a valid weekday
three-letter acronym. For example:

<transaction period=”weekly” day-of-week=”mon”/>

For a monthly period, on the other hand, day-of-month
attribute can be used to specify on what day of every
month a transaction can be processed. For example:

<transaction period=”monthly” day-of-month=”1”/>

As you can see there are various possible combinations,
each one requiring the use of different attributes.

4.1 Coping with Odd Transactions
The fundamental principle underlying the payment and
transaction assertions is that there will only be a need for
one assertion each to describe all of the necessary

conditions for a contract. This assumption is true in most
cases; however, there could be instances when a policy
needs to declare an odd transaction to cope with a special
case. For example, for a fixed term contract, there could
be a need to declare an odd transaction to handle the
repayment of the remaining amount upon termination of
the contract (i.e. as part of the last transaction).

To handle odd transactions additional payment or
transaction assertions need to be declared within a single
policy. Having two or more assertions of the same type
within one policy, however, is problematic because it
introduces ambiguity as to which one the payment
gateway should validate against for a particular payment
period. To remove this ambiguity, the concept of
constraints was introduced.

A constraint is not a stand-alone assertion. Instead, it is an
optional sub-element of the payment or transaction
assertions. Within the policy language it is expressed as
an XML element <constraints>. Within each constraints
element at least one date assertion must be declared,
either <not-before-date> or <not-after-date>, or both.
When validating a payment order against a policy the
payment gateway can distinguish between assertions of
the same type by checking whose constraints make it
applicable within the current payment period.

The following example depicts two payment assertion
declarations whose constraints define which payment
period they apply to:

<payment currency=”aud” amount=”80” type=”fixed”>
 <constraints>
 <not-after-date value=”2007-11-30”/>
 <constraints>
</payment>
<payment currency=”aud” amount=”50” type=”fixed”>
 <constraints>
 <not-before-date value=”2007-12-01”/>
 </constraints>
</payment>

By introducing the concept of constraints additional
policy validation logic is needed. This checking is
important because even with constraints it is still possible
to declare two assertions of the same type that overlap
within a payment period. Policy validation must identify
this scenario and reject any contract that does not
uniquely specify a single assertion per payment period.

5 Periodical Payment Model Implementation
In this section we shall briefly describe periodical
payment components that have either already been
implemented or are due to be implemented in the near
future.

5.1 Periodical Payment Policy Parser and
Validation

To date, the first draft of the policy XML schema has
been completed. Its corresponding parser and validation
logic have been implemented using Java and Apache
XML-Beans toolkit. Using XML-Beans allows us to bind

XML types to Java objects. XML-Beans is used to
compile the policy XML schema that generates both the
XML parser and the corresponding Java data types.

When parsing policy XML contracts the parser performs
semantic/syntactic validation of the XML. However, this
validation is insufficient. Additional validation logic was
implemented to check policies for ambiguity. A custom
validator, written in Java, is used for checking that all
elements that have constraints are not in conflict with
each other. In addition, element attributes that are inter-
dependant are checked to ensure that their values are
meaningful in the context in which they are used.

5.2 Customer and Merchant Libraries
Periodical payment process is composed of two distinct
communication components. The first component dictates
the communication between the customer and the
merchant while the second one controls merchant-
payment gateway interaction. Considering that our
primary focus to date was the XML policy schema
specification and its validation, at the time of writing the
communication components have not been implemented.

For the customer-merchant interaction client-side
libraries are needed that can securely communicate with
the merchant payment systems. Unfortunately, currently
there are no standard mechanisms for implementing such
client libraries. We are considering implementation of a
browser plug-in that will detect periodical payment
transactions and will facilitate customer interaction with
merchant payment systems.

Implementation of the merchant to payment gateway
interaction component will be completed in the near
future using web services. Web services technology
offers two important advantages. Firstly, this technology
integrates well with the secure socket layer (SSL)
protocol. We heavily rely on it for establishing a secure
channel between a merchant and a payment gateway.
Also, it is the mechanism that allows the merchant to
send the policy statement to the payment gateway via a
proxy certificate.

In addition, web services are a proven technology. They
have been used in numerous commercial applications
where decoupling of components and interface flexibility
is of particular importance. Unlike existing payment
gateway interfaces, using web services allows us to
generalise this interface, which means that merchants will
no longer require proprietary libraries supplied by the
payment gateway providers to process transactions.

Existence of readily available web services
implementations gives us confidence that this technology
can be quickly adopted for periodical payments. Its
performance, however, is a crucial factor that will impact
its acceptance as an electronic payment solution.
Therefore, it is our intention to develop a prototype
implementation of the payment gateway web services
interface, and to conduct initial performance testing of it
to validate that it can process a suitably large number of
concurrent transactions.

6 Future Work
As was mentioned in the previous section, the next task
on our agenda is the development of the payment
gateway web services interface and corresponding
merchant libraries. Using this implementation we shall
analyse the performance of the payment model. In
addition, the necessary customer side libraries will also
be developed to allow for complete, end-to-end test
coverage of the payment process.

The periodical payment model is a complex scheme that
requires infrastructure-wide changes to be effective.
Presently, it is unreasonable to expect all consumers to be
able to properly protect their private keys. The adoption
of smart cards is slow and most current computers are not
equipped to read them. As such, it is unlikely that any
technology that makes demands on client side PKI will
work. Therefore, as an alternative, it will be examined
how conventional username/password technics can be
adapted to the periodical payment model presented here.

Another potential area that needs closer scrutiny is
converting the periodical payment policy into human
readable form. There are two important reasons for this.
Firstly, as it was stated previously, we consider the
customer’s ability to visually inspect the policy contract
an important part of the policy validation process. Unless
this information is presented to a customer in an
understandable way, the customer’s signature will have
no meaning.

Another improvement that is closely related to the one
above, is exploring mechanisms for customers to
negotiate the terms of the policy contracts. Once each
policy is presented to the user in a readable form, a
mechanism is needed that allows the customer to make
changes to the policy and submit them to the merchant for
consideration. Merchants need ability to declaratively
specify the boundaries of acceptable amendments so that
change requests can be automatically processed and
accepted, rejected or alternative counter-amendment
proposed. A communication protocol needs to be
established that allows both parties to participate in this
negotiation in a secure manner.

Also, an interesting area that needs further improvements
is the payment gateway transaction validation process.
The current model requires the payment gateway to keep
a transaction revocation list to prevent double spending,
which is an expensive task. Ideally, the payment gateway
should be stateless and require no local storage of
transaction data. This means that further investigation
needs to be performed in determining whether more
information can be encoded in the payment credentials
that will reduce the need for local data to be maintained
by the payment gateway.

In addition, it should not be overlooked that regardless of
its intended purpose, the periodical payment model is just
another payment scheme. As such, some investigation is
warranted into its application as a conventional, non-
periodical payment scheme. Of course depending on the
overall complexity of using this particular approach as a
normal payment mechanism it may prove impractical.

Finally, even though periodical payments do not fit well
the traditional electronic payments approach it is still
quite interesting to examine potential addition of
anonymity to the scheme. In most electronic payments
research a great deal of importance is placed on
anonymity and as such should not be overlooked for
periodical payments although once again their practical
use might be of limited interest and acceptance.

7 Conclusion
Periodical payments are radically different to traditional
e-commerce payments. Payment transactions require no
customer involvement during each transaction and
empower the merchant to initiate payment transactions at
whichever time they see convenient. Transfer of control
of customer personal banking details to merchants creates
an overwhelming need for a better security mechanism
than what is currently available.

Periodical payment model represents an important change
in direction for electronic commerce payments. They fill
the security and useability gap that the direct debit model
used now is incapable of doing due to its paper driven
design. Neither can the existing solutions offer value due
to their fundamental focus that place anonymity and non-
relinquishing of control as priority.

The periodical payment model presented in this paper
builds on a strong cryptographic foundation. It uses the
existing and proven X.509 standard for securing payment
channels and for providing customer, merchant and
payment gateway authentication. The use of the restricted
proxy certificate concept allows us to implement transfer
of control mechanism that enables the customer to
securely transfer account access rights to the merchant.

The use of restricted proxy certificates serves another
purpose. It can be used to carry the periodical payment
policy. This policy replaces the traditional direct debit
request form as the customer-merchant payment
agreement that the customer must sign. Our ability to
easily verify the legitimacy of the payment certificate and
to determine the applicability of policy assertions to the
current transaction is what gives this model its great
flexibility and allows safe transfer of control through
delegation.

8 References
APCA (2005): Annual Report. Sydney, Australian

Payments Clearing Association.

Bellare, M., Garay, J., Hauser, R., Herzberg, A.,
Krawczyk, H., Steiner, M., Tsudik, G. & Waidner, M.
(1995): iKP - A Family of Secure Electronic Payment
Protocols. Proceedings of the First USENIX Workshop
on Electronic Commerce. New York, USA, USENIX.

Bellare, M., Garay, J. A., Hauser, R., Herzberg, A.,
Krawczyk, H., Steiner, M., Tsudik, G., Van
Herreweghen, E. & Waidner, M. (2000): Design,
implementation, and deployment of the iKP secure
electronic payment system. IEEE Journal on Selected
Areas in Communications, 18, 611-627.

Housley, R., Polk, W., Ford W. & Solo D. (2002):
Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile.
RFC3280. Internet Engineering Task Force (IETF).

Koufil, D. & Basney, J. (2005): A credential renewal
service for long-running jobs. Proceedings of the 6th
IEEE/ACM International Workshop on Grid
Computing. Seattle, Washington, USA, IEEE
Computer Society Press.

Low, S. H., Kristol, D. M. & Maxemchuk, N. F. (1994):
Anonymous Internet Mercantile Protocol. Technical
Report. Murray Hill, New Jersey, AT&T Bell
Laboratories.

RBA (2001): Payments System Board. Annual Report.
Sydney, Reserve Bank of Australia.

RBA (2005): Bill payments and Automated Teller
Machines. Annual Report. Sydney, Reserve Bank of
Australia.

Tuecke S., Welch, V., Engert, D., Pearlman, L. &
Thompson, M. (2004): Internet X.509 Public Key
Infrastructure (PKI) Proxy Certificate Profile.
RFC3820. Internet Engineering Task Force (IETF).

Welch, V., Foster, I., Kesselman, C., Mulmo, O.,
Pearlman, L., Tuecke, S., Gawor, J., Meder, S. &
Siebenlist, F. (2004): X.509 Proxy Certificates for
Dynamic Delegation. Proceedings of the 3rd Annual
PKI R&D Workshop. Gaithersburg MD, USA, NIST
Technical Publications.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J.,
Czajkowski, K., Gawor, J., Kesselman, C., Meder, S.,
Pearlman, L. & Tuecke, S. (2003): Security for Grid
services. Proceedings of the 12th IEEE International
Symposium on High Performance Distributed
Computing. Seattle, Washington, USA, IEEE
Computer Society Press.

XMLSchema (2005): XML Schema Specification, World
Wide Web Consortium (W3C),
http://www.w3.org/2001/XMLSchema. Accessed 3
Aug 2006.

	Introduction
	Related Work
	Periodical Payment Process Using Restricted Proxy Certificat
	Delegation of Periodical Payment (Proxy) Certificate
	Solving the Double-Spending Problem

	Payment using Periodical Payment (Proxy) Certificate

	Periodical Payment (Proxy) Certificate Policy Language
	Coping with Odd Transactions

	Periodical Payment Model Implementation
	Periodical Payment Policy Parser and Validation
	Customer and Merchant Libraries

	Future Work
	Conclusion
	References

