BatCave: Adding Security to the BATMAN Protocol

Anne G. Bowitz, Espen G. Graarud, Lawrie Brown, Martin G. Jaatun

September 2011

ITEM, NTNU, Trondheim, Norway UNSW@ADFA, Canberra, Australia

Research Problem

- need to implement a secure ad hoc network that might be used in emergency services, disaster assistance, and military applications
- that can be established quickly
- with controls to limit access to network

Who Are We?

- Anne G. Bowitz & Espen G. Graarud: 2010
 Masters students at ITEM, NTNU, Norway
 - thesis work on simulation & prototype
- ◆ Lawrie Brown: UNSW@ADFA academic
 - original proposal from Erasmus Mundus visit
- Martin G. Jaatun: SINTEF research scientist
 - prior SINTEF project, thesis supervisor

Solution Overview

- extend BATMAN adhoc net routing protocol
 - so routing advertisements only accepted from authorised stations in the network
- use X.509 proxy certificates
 - to identify authorised client stations
 - generated by each network client
 - signed by a suitably authorised station
 - likely located with emergency services command unit

Related Work

- SINTEF project to develop a secure restricted ad-hoc network for emergency use
 - suggested extensions to OLSR routing protocol
 - using either pre-configured or short-lived certificates to identify clients
 - details mostly unspecified

Related Work cont.

- other work outlines issues with conventional PKI in such ad hoc networks
 - issues with certificate validation and revocation
 - proposal has some nodes intermittently connected
 - unlikely in such emergency or disaster scenarios
- short-lived X.509 certificates may be suitable for low power/resource limited devices
 - no revocation, less computationally intensive algs

Addressing Limitations

- in choice of ad hoc network routing protocol
 - OLSR standard, but see performance issues
 - BATMAN simpler, best overall performance
- in choice of certificate type to use
 - existing proposals involve using a mix of conventional and short-lived certificates
 - issuing stations need CA functionality & certificates
 - propose use of proxy certificates instead

X.509 Proxy Certificates

- X.509 certificates with proxy extensions
 - so can use in most existing PKI applications
- signed by conventional client or proxy cert
 - hence any client can issue proxy certificates
- can use shorter lifetimes & smaller key sizes
 - to better suit lower resourced mobile stations
- use as access token /capability for a service
 - opposite sense to current use in grid computing
 - where user delegates rights to a server

BATMAN

- Better Approach To Mobile Adhoc Networking
- replaces OLSR pro-active routing protocol
 - which requires every node in network to calculate whole routing path, link-state, complex
- BATMAN nodes only compute next hop
 - compares number of routing messages received from each node and who was the last sender
 - hence a simpler, distance-vector, routing protocol

BATMAN OGM

- exchanges OGM routing messages
 - are received and rebroadcasted by all nodes
 - so nodes learn existence of each and first hop

0								1							2															3	
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
	Version															Time To Live							Gateway Flags								
	Sequence Number															Gateway Port															
	Originator Addr															es	5														
Previous Sender Address																															
	TQ HNA Lenght													One-Time Password																	
	Key Stream Sequence Number																														

Requirements

- consider emergency situation scenario, with communication infrastructure unavailable
- Ad hoc networks have desired characteristics
 - quick and inexpensive setup
 - independent of communication infrastructure
- but also introduce security challenges
- we refine these needs further in the paper

Solution Outline

- system design requires nodes to authenticate and be trusted before using the network
- starts with out-of-band authentication
 - where master node verifies new nodes
- SP discovers new node via routing announcements and invites it to handshake
 - establish trust, verify fingerprints, issue proxy

Solution Outline cont.

- once have proxy cert, each node periodically broadcasts (actually unicast) a message with
 - ephemeral key, IV, nonce, and digital signature
- used to generate a keystream (AES-CBC)
- then appends two new bytes from keystream
 - to each routing announcement
 - to re-broadcasts of neighbors' announcements
 - forms a one-time password on announcements

Solution Outline cont.

- SP regularly broadcasts lists of trusted nodes
 - with id, address and public key for each
 - list is signed by SP to guarantee integrity
- hence nodes only learn about new nodes from this list, not directly
- other nodes can rebroadcast list for SP if offline

NS3 Simulations

Prototype on Ubuntu Linux

Prototype on Ubuntu Linux

Discussion

- propose novel solution that continuously verifies routing announcements received from neighbors
 - not using digital signatures on each as too big
 - can't just sign a very few as leave open weaknesses
 - rather use keystream as one-time password to verify messages
- solution is based on trust
 - that each node correctly sends and rebroadcasts announcements
 - scheme does not protect against malicious but trusted nodes

Conclusion & Questions

- presented security extension to BATMAN ad hoc routing protocol
 - to handle controlled network admission
 - to prevent unauthorized nodes influencing routing
- NS3 simulations indicate these security mechanisms impose reasonable overheads
- prototype implementation confirms this
 - although further refinements are desirable
- hence BatCave is a viable security solution